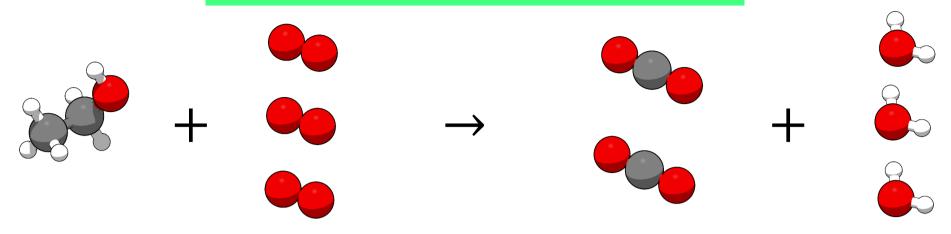
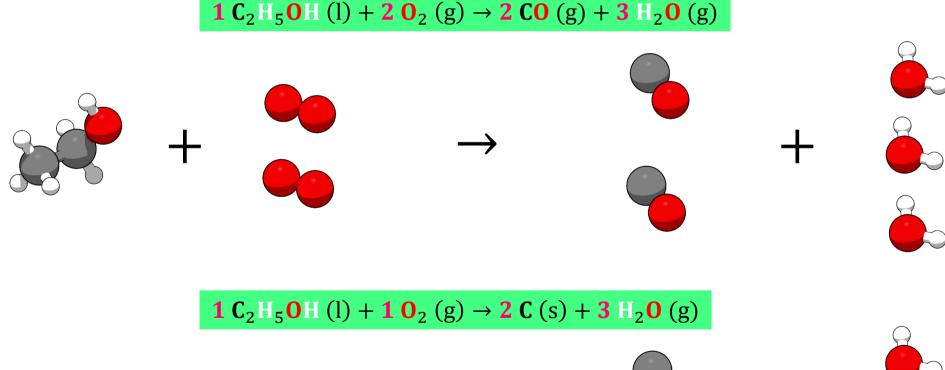
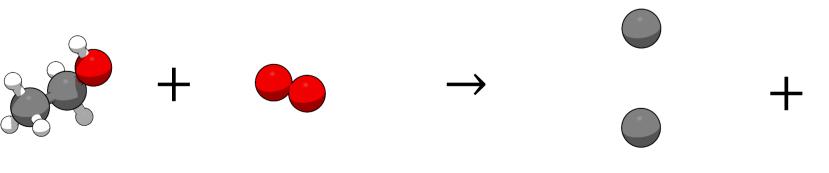
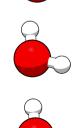
COMBUSTÃO


Reação entre um combustível e gás oxigênio (O₂) (comburente), liberando energia na forma de calor e luz

De forma generalizada, para combustíveis com altos teores da carbono e hidrogênio (C e H), os produtos da combustão completa são gás carbônico (CO₂) e água (H₂O)

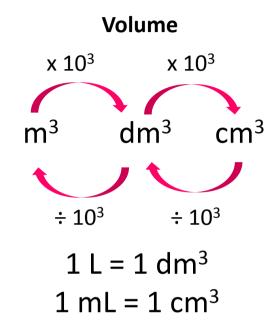

COMBUSTÃO COMPLETA


1 C_2H_5 **0**H (l) + **3** O_2 (g) → **2** CO_2 (g) + **3** H_2 **0** (g)

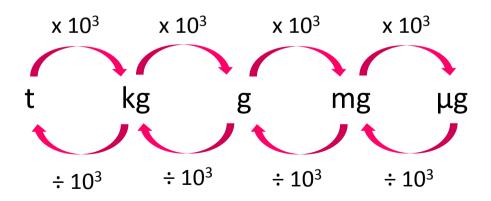


COMBUSTÃO INCOMPLETA

1 C_2H_5 **0** $H(l) + 2 O_2(g) → 2 CO(g) + 3 H_2 O(g)$



Relação proporcional	Dados necessários	Exemplo
Quantidade de matéria (mol) e massa (g)	Massa atômica (u) e/ou massa molar (g mol ⁻¹) As massas atômicas dos elementos encontram-se na tabela periódica	Deve-se converter a massa em gramas para a quantidade de matéria em mol a partir da massa molar da substância
		Massas atômicas: H = 1 u; C = 12 u; O = 16 u Massa molar do etanol (C ₂ H ₅ OH) = soma das massas atômicas de todos os átomos Massa molar do etanol = 2x12 + 6x1 + 1x16 = 46 g mol ⁻¹ 46 g de etanol equivalem a 1 mol de moléculas de etanol (6,02 x 10 ²³ moléculas de etanol), Portanto, em 230 g de etanol, há 5 mol de moléculas de etanol
Quantidade de matéria (mol) consumida ou formada de uma substância, a partir do consumo ou formação de outra substância	Coeficientes estequiométricos da equação química (balanceamento)	Na reação $ 1 C_2 H_5 OH (l) + 3 O_2 (g) \rightarrow 2 CO_2 (g) + 3 H_2 O (g), \\ \text{os coeficientes estequiométricos são 1, 3, 2 e 3,} \\ \text{respectivamente, estabelecendo as relações} \\ \text{estequiométricas da reação.} \\ \text{Para o consumo de uma parte de etanol, são} \\ \text{consumidas também 3 partes de gás oxigênio. Desta} \\ \text{forma, para que haja o consumo de 5 mol de etanol,} \\ \text{deve-se consumir 15 mol de gás oxigênio} $
Quantidade de matéria (mol) de um gás e o volume ocupado por esta quantidade (L)	Pressão e temperatura nas quais a reação química ocorre. Utilizar a equação PV = nRT, estabelecendo a relação entre a quantidade de matéria (n) e o volume ocupado (V), sendo P a pressão exercida pelo gás (atm), T a temperatura (K) [T(K) = T(°C) + 273] e R a constante universal dos gases perfeitos (R = 0,082 atm.L/mol.K) Lembrando que nas C.N.T.P. (condições naturais de temperatura e pressão: 1 atm e 273 K), o volume molar de um gás (volume ocupado por 1 mol do gás) é de 22,4 L mol ⁻¹	Como as condições da reação são as mesmas das C.N.T.P., pode-se considerar que o volume molar de qualquer gás é de 22,4 L mol ⁻¹ Também poderia ter-se utilizado a equação PV = nRT, tal que P = 1 atm, n = 1, R = e T = 273 K Se 1 mol de moléculas de gás oxigênio ocupam 22,4 L, então, 15 mol de moléculas deste gás ocupam 15 x 22,4 = 336,0 L


TRANSFORMAÇÕES ENTRE UNIDADES

Quantidade de matéria

1 mol = 6,02 x 10²³ entidades elementares (átomos, moléculas, partículas, ...)

Massa

COMPOSIÇÃO DO AR

Aproximadamente 20% de O₂ e 80% de N₂. Considerar o restante dos gases como 0%

EXERCÍCIOS DA LISTA RESOLVIDOS: 19 E 21

19. Para proteger estruturas de aço da corrosão, a indústria utiliza uma técnica chamada galvanização. Um metal bastante utilizado nesse processo é o zinco, que pode partir de um obtido a minério denominado esfalerita (ZnS), de pureza 75%. Considere que a conversão do minério em zinco metálico tem rendimento de 80% nesta sequência de equações $2 \operatorname{ZnS} + 3 \operatorname{O}_2 \rightarrow 2 \operatorname{ZnO} +$ químicas: $2 SO_2$

$$ZnO + CO \rightarrow Zn + CO_2$$

Considere as massas molares: ZnS (97 g/mol); O_2 (32 g/mol); ZnO (81 g/mol); SO_2 (64 g/mol); CO (28 g/mol); CO_2 (44 g/mol); e Zn (65 g/mol).

Que valor mais próximo de massa de zinco metálico, em quilogramas, será produzido a partir de **100 kg** de esfalerita?

- a) 25
- b) 33
- c) 40
- d) 50
- e) 54

21. Metanol é um excelente combustível que pode ser preparado pela reação entre monóxido de carbono e hidrogênio, conforme a equação química

$$CO(g) + 2 H_2(g) \rightarrow CH_3OH(l)$$

Supondo rendimento de 100% para a reação, quando se adicionam 336 g de monóxido de carbono a 60 g de hidrogênio, devemos afirmar que o reagente em excesso e a massa máxima, em gramas, de metanol formada são, respectivamente,

Dados:

massas molares g/mol:

CO: 28

H₂: 2

CH₃OH: 32

- a) CO, 384.
- b) CO, 396.
- c) CO, 480.
- d) H₂, 384.
- e) H₂, 480.

19. Para proteger estruturas de aço da corrosão, a indústria utiliza uma técnica chamada galvanização. Um metal bastante utilizado nesse processo é o zinco, que pode ser obtido a partir de um minério denominado esfalerita (ZnS), de pureza 75%. Considere que a conversão do minério em zinco metálico tem rendimento de 80% nesta sequência de equações químicas: $2 \operatorname{ZnS} + 3 \operatorname{O}_2 \rightarrow 2 \operatorname{ZnO} + 2 \operatorname{SO}_2$

 $ZnO + CO \rightarrow Zn + CO_2$

Considere as massas molares: ZnS (97 g/mol); O_2 (32 g/mol); ZnO (81 g/mol); SO_2 (64 g/mol); CO_2 (44 g/mol); EV_2 (65 g/mol).

Que valor mais próximo de massa de zinco metálico, em quilogramas, será produzido a partir de **100 kg** de esfalerita?

RESOLUÇÃO

Para determinar a massa de zinco metálico será produzido, partimos do dado inicial do exercício: 100 kg de esfarelita (minério que contem ZnS). Sua pureza é de 75%, ou seja, a massa da substância sulfeto de zinco (ZnS) é de apenas 75 kg, e os outros 25 kg de esfarelita são equivalentes às impurezas. Para determinar-se a massa de zinco metálico produzida, deve-se estabelecer as relações coeficientes entre OS estequiométricos das reações, de forma que haja uma relação entre quantidade de matéria (em mol) de Zn produzida a partir da quantidade de matéria (em mol) de ZnS consumida.

A massa molar do ZnS é de 97 g mol⁻¹ (dado do enunciado), ou seja, **para cada 97 g da substância, há 1 mol**, logo, para 75.000 g (75 kg), há aproximadamente 773 mol de ZnS.

Sabe-se que para 2 partes de ZnS consumidas, 2 partes de ZnO é produzida, e que a cada 1 parte de ZnO consumida, 1 parte de Zn é produzida. Desta forma, pode-se concluir que para cada 1 parte de ZnS consumida, 1 parte de Zn é produzida, ou seja, para cada 1 mol de ZnS consumido, 1 mol de Zn é produzido. Conclui-se, então, que houve a formação de 773 mol de Zn, já que houve o consumo de 773 mol de ZnS.

A partir da massa molar do Zn (65 g mol⁻¹), é possível determinar a massa de Zn formada. A massa equivalente a 1 mol de Zn é de 65 g, portanto, a massa para 773 mol de Zn é de aproximadamente 50.000 g (50 kg), considerando-se um rendimento teórico de 100%. Visto que o rendimento da reação foi de 80%, a massa de zinco metálico formada é de 50 kg x 80% = 50 kg x 0,8 = 40 kg. (C)

21. Metanol é um excelente combustível que pode ser preparado pela reação entre monóxido de carbono e hidrogênio, conforme a equação química

$$CO(g) + 2H_2(g) \rightarrow CH_3OH(l)$$

Supondo rendimento de 100% para a reação, quando se adicionam 336 g de monóxido de carbono a 60 g de hidrogênio, devemos afirmar que o reagente em excesso e a massa máxima, em gramas, de metanol formada são, respectivamente,

Dados: massas molares g/mol: CO: 28; H₂: 2; CH₃OH: 32

RESOLUÇÃO

A fim de se conhecer a massa de metanol (produto) formada, deve-se partir do dado inicial fornecido pelo exercício. No entanto, o exercício fornece a massa de 2 reagentes diferentes. Neste caso, é necessário determinar qual dos reagentes está em excesso (irá sobrar após o consumo total do outro reagente). Para isso, basta transformar a massa de ambos os reagentes para quantidade de matéria e estabelecer as relações coeficientes com OS estequiométricos. massa Α molar monóxido de carbono (CO) é de 28 g/mol, logo, em 336 g de CO, há 12 mol. Para o hidrogênio (H₂), sua massa molar é de 2 g/mol, portanto, em 60 g de H₂, há 30 mol. Pelos coeficientes da equação, vemos que a cada 1 parte de CO consumida, 2 partes de H₂ são consumidas, logo, para 12 mol de CO consumidos, 24 mol de H₂ são consumidos. No entanto, há 30 mol de H₂ disponíveis, **logo**, **há 6 mol de H₂ em excesso**, levando à conclusão que o hidrogênio é o reagente em excesso e que o monóxido de carbono é o **reagente limitante** (é totalmente consumido durante a reação).

Visto que a cada 1 parte de CO consumida, 1 parte de metanol (CH₃OH) é formada, então a cada 12 mol de CO consumidos, são formados 12 mol de CH₃OH. Como a massa molar do metanol é de 32 g/mol, pode-se estabelecer a seguinte relação:

A cada 32 g de metanol, há 1 mol, então para 12 mol de etanol há 384 g. (D)